A Kadison–Dubois representation for associative rings
نویسنده
چکیده
In this paper we give a general theorem that describes necessary and sufficient conditions for a module to satisfy the so–called Kadison–Dubois property. This is used to generalize Jacobi’s version of the Kadison–Dubois representation to associative rings. We apply this representation to obtain a noncommutative algebraic and geometric version of Putinar’s Positivstellensatz. We finish the paper by answering questions given by Marshall and Jacobi.
منابع مشابه
A General Representation Theorem for Partially Ordered Commutative Rings
An extension of the Kadison-Dubois representation theorem is proved. This extends both the classical version [3] and the preordering version given by Jacobi in [5]. It is then shown how this can be used to sharpen the results on representations of strictly positive polynomials given by Jacobi and Prestel in [6]. In [4] Dubois extends a result of Kadison on representation of archimedean partiall...
متن کاملRepresentation of real commutative rings
During the last 10 years there have been several results on the representation of real polynomials, positive on some semi-algebraic subset of R. These results started with a solution of the moment problem by Schmüdgen for corresponding sets. Later Wörmann realized that the same results could be obtained by the so-called “Kadison-Dubois” Representation Theorem. The aim of our talk is to present ...
متن کامل($phi,rho$)-Representation of $Gamma$-So-Rings
A $Gamma$-so-ring is a structure possessing a natural partial ordering, an infinitary partial addition and a ternary multiplication, subject to a set of axioms. The partial functions under disjoint-domain sums and functional composition is a $Gamma$-so-ring. In this paper we introduce the notions of subdirect product and $(phi,rho)$-product of $Gamma$-so-rings and study $(phi,rho)$-represen...
متن کاملRings in which elements are the sum of an idempotent and a regular element
Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...
متن کاملModules over Differential Polynomial Rings
This note announces a number of results on the structure of differential modules over differential rings, where differential ring means a ring with a family of derivations and differential module means a module having a family of operators compatible with the derivations of the ring. To fix notation, throughout the paper we let A denote an associative ring, M = AM an 4-module, k the correspondi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003